Text and Data Mining

Patrick Ruch patrick ruch @hesge.ch / @patrickruch HES-SO HEG Genève

5th National Gathering of Medical Librarians SAMW Bern, August 31 2017

SIB Swiss Institute of Bioinformatics

Haute école de gestion de Genève

Haute école de gestion de Genève Geneva School of Business Administration

How can I relevantly answer the invitation from the SAMS' medical librarians ?

Special greetings to Tamara Morcillo and Isabelle de Kaenel !

Today's agenda

0 0 10

Programme

9.00 am	Registration, coffee and opportunity to visit		Charlotte Viken, Senior Consultant, Wolters Kluwer Health
9.20 am	Opening	2.00 pm	Living Systematic Reviews – from Theory to Implementation
	Dr. Herman Amstad, Secretary General, SAMS, Bern		Dr. Michel Counotte and Dr. Phi Hung Nguyen, Institute of Social and Preventive Medicine, University
9.30 am	Keynote lecture: Open Science and Open Data		of Bern
	Prof. Matthias Egger, Professor of Epidemiology and		
	Public Health, University of Bern, President of the SNSF Research Council	2.45 pm	Coffee break and opportunity to visit sponsors' stalls
		3.15 pm	Parallel sessions
10.30 am	Coffee break and opportunity to visit sponsors' stalls		Workshop: Mine and Combine – Text Mining Tools Used for Search Term Identification
10.50 am	Research Data Management in Medical Contexts		Jolanda Elmers and Cécile Jaques,
	Dominic Tate, Head of Library Research Support, Edinburgh University Library, Scotland		Medical University Library, Lausanne
11.35 am	Data and Text Mining Prof. Patrick Ruch, Head of Information Sciences		Q&A Session: Research Data Management in Medical Contexts
			Dominic Tate, Head of Library Research Support,
	Department, University of Applied Sciences HEG, Geneva		Edinburgh University Library, Scotland
12.20 pm	Lunch break and opportunity to visit sponsors' stalls	4.35 pm	Wrapping up
			Gerhard Bissels, Head of Bühlplatz Library,

1.40 pm

Sponsor's session: Ovid Discovery - A Unified Disco-

very and Delivery Platform Focused and Specialized

in Biomedical Content

Count of bi-gram and tri-grams

0 0 0 00

1. and opportunity	4 (1.5%)
2. opportunity to	4 (1.5%)
3. to visit	4 (1.5%)
4. visit sponsors'	4 (1.5%)
5. sponsors' stalls	4 (1.5%)
6. head of	4 (1.5%)
7. university library	4 (1.5%)
8. text mining	3 (1.1%)
9. research data	3 (1.1%)
10. data management	3 (1.1%)

1. and opportunity to	4 (1.5%)
2. opportunity to visit	4 (1.5%)
3. to visit sponsors'	4 (1.5%)
4. visit sponsors' stalls	4 (1.5%)
5. research data management	3 (1.1%)
6. break and opportunity	3 (1.1%)
7. data and text	2 (0.7%)
8. and text mining	2 (0.7%)
9. university of bern	2 (0.7%)

0 0 1 10 0 1

... to support my presentation !

0 0¹⁰1¹

1. and opportunity	4 (1.5%)
2. opportunity to	4 (1.5%)
3. to visit	4 (1.5%)
4. visit sponsors'	4 (1.5%)
5. sponsors' stalls	4 (1.5%)
6. head of	4 (1.5%)
7 university library	4 (1.5%)
8. text mining	3 (1.1%)
9 research data	3 (1.1%)
10. data management	3 (1.1%)

	1. and opportunity to	4 (1.5%)	
	2. opportunity to visit	4 (1.5%)	
	3. to visit sponsors'	4 (1.5%)	
	4. visit sponsors' stalls	4 (1.5%)	
	5. research data	3 (1 1%)	
	management	3 (1.176)	
	6. break and opportunity	3 (1.1%)	
	7. data and text	2 (0.7%)	
	8. and text mining	2 (0.7%)	
	9. university of bern	2 (0.7%)	

Objective of text and data mining

To support you like TDM helped me today !

- ... medical librarians ?
- ... research data and open science ?
 [well covered by other speakers]
- ... clinical knowledge ?

History

- Empirical medicine \rightarrow Observation & Cooking
- Evidence-based medicine \rightarrow Statistical power
- Personalized health \rightarrow Deciphering omics

Blind spot 🙂

- Empirical medicine → Observation & Cooking ☺
 [Mountains are made of stones]
- Evidence-based medicine \rightarrow Statistical power

• Personalized health \rightarrow Deciphering omics

Access to EHR evidences (80% narratives)

- Overcome publication paywalls
- Fight silos [researchers, clinicians, institutions...]
- Empower patients
- Establish circle of trust and clarify legal basis

Basis of clinical practice...

• Empirical medicine \rightarrow Observation & Cooking

Evidence-based medicine → Statistical power
 Open Access, Open Science required !

- Personalized health \rightarrow Deciphering omics
- Access to EHR evidences (80% narratives) !

F.A.I.R

Findable – indexing strategies

Accessible – archiving + access rights

Interoperable – terminologies

• Re-usable – licensing models

How librarian can improve compliance with FAIR principles ?

Why not Google ?

- Atomic research unit is no more the article \rightarrow datasets
- Datasets are multimodal text search is not sufficient !
 - Sequences
 - Texts
 - Images
 - Spreadsheets
 - [...]
- Datasets require semantically-rich meta-data \rightarrow Curation
- Access must be monitored, de-identification is a myth !

Librarians are needed

- To define standards
- To define terminology contents
- To define transcoding tables between terminologies
- To curate datasets (~indexing)

Librarians are needed if...

They are data science skills

- Onto-Terminology management *
- Semantic web technologies *
- Data management
 - Databases, e.g. SQL... *
 - Text processing pipelines, e.g.XML... *
 - Search engines
 - Data Analytics...

• They have some domain-specific expertise

Data search & analytics

- How far should be go?
 - Search engines
 - Text and Data Analytics...
 - → Specialization at MSc level (2018) ?

Overview

Dataset access → Learning to rank !

- Lifecycle Management of Dataset
 - Primary Data Generation (DMP, SNF Oct 1st 2017)
 - Expert-level curation
 - Storage... archiving...

Applications for decision-support in oncology

A Machine Learning Pipeline for Enhanced Question Answering over Biomedical Datasets

From traditional search to dataset search

Search engine

- Automatic text categorizer (indexing)
- Question-answering, e.g. EAGLi

Dataset search engines

- Dataset categorization \rightarrow Validation \rightarrow Curation
- Query expansion for dataset search

EGA: European Genome-Phenome Archive

- Data are stored locally (e.g. Research Libraries, Hospitals, SIB...)*
- Access policy is managed locally (ELSI, IRB...)*
- Meta-data are generated locally*
- Meta-data are exported and stored centrally (SIB, EBI, NIH, ...)
- Search is currently possible only on meta-data but not sufficient
- Compatibility with NIH repository (dbGap) → standards*
 - Structuring
 - Transcoding [e.g. ICD-10 or ICD-O3 → MeSH]

*: Research libraries

Query types

- 1. Disease-based search across scales (phenotypes, MoA, Pathway, Proteins...)
- 2. Molecular-based search across organisms and scales
- 3. Molecular data/phenotype associations
- 4. Behavioural and environmental data

Example

- Search for data on <u>neural brain tissue</u> in <u>transgenic mice</u> related to <u>Huntington's</u> <u>disease</u>
- 2. Search for gene expression datasets on photo transduction and regulation of calcium in blind D. melanogaster
- 3. Find data of all types on the <u>regulation of DNA repair</u> related to the <u>estrogen</u> <u>signaling pathway</u> in <u>breast cancer patients</u> across all databases
- 4. Search for *protein aggregation* and *gene expression* data regarding <u>aging</u> across all databases

Background

Need for dataset retrieval engines/QA applied to datasets

- Text \rightarrow PubMed
- Open data movement
- Production of data in public and private sectors

Text search vs. dataset search

- Modality
- Heterogeneity
- Indexing

Specifics

• Query size

- Lack of context
- ... but N terms ~ 5-10 !
- Query constraints
 - QA \rightarrow Type of dataset
- Dataset formalization and search benchmark
 - Variety of formats
 - Lack of extensive gold standard queries

Scientific objective

• To accelerate development of search strategies for biomedical datasets

- Go beyond utilization of the metadata
 - Assign meta-data automatically
 - Search without meta-data
- To explore machine learning methods to enhance search
 - Increase query context
 - Constraint results to query context

Machine learning ranking pipeline

0¹⁰1¹ 0 0¹10⁰

Query Expansion and dataset categorization

Access to research data

- Query expansion like PubMed
- Dataset indexing like MeSH indexing

Proposal

- Allow 360 search
- Use semantically-rich contents (Institutional Archives) to bridge data contents
- Provide interactive data curation mechanisms

Backgroung: Doc2Vec

• Derive a semantic algebraic model on top of textual features

- Derived from a Bag of Word representation (assume independence of words)
- Generative model to recover from (too strong) independence
 - Distributed Bag of Word
 - Skip-gram model
- Parametric model (must be tuned)
- Example:

v(Paris + France)... v(London, UK) \rightarrow Implicit representation of "capital city"

 $v(Paris + France) - v(Paris + Italy) \rightarrow$ "Rome"
Query expansion – Word embedding

Query expansion – Text embedding

N-10⁰

38

Query expansion – Examples

01011 0 02 10⁰

Term	Medline		PMC		bioCADDIE	
	expansion	score	expansion	score	expansion	score
	breast	0.889	carcinoma	0.674	carcinoma	0.737
	cancers	0.855	tumor	0.616	cancers	0.720
cancer	prostate	0.801	cancers	0.585	adenocarcinoma	0.669
	colorectal	0.794	tumour	0.583	malignancies	0.626
	lymphoma	0.621	glioma	0.559	tumor	0.779
	mouse	0.756	mammalian	0.582	bovine	0.553
	mammalian	0.711	murine	0.441	porcine	0.542
human	also	0.661	rat	0.428	murine	0.526
	humans	0.661	vertebrate	0.417	mouse	0.518
	murine	0.656	preeclamptic	0.400	humans	0.486
	damage	0.794	repairthe	0.597	closure	0.515
	excision	0.764	replication	0.570	metabolism	0.510
repair	double-strand	0.727	ssbr	0.543	formation	0.509
	nucleotide- excision	0.723	repairing	0.540	grafting	0.504
	damaged	0.717	damage	0.516	implantation	0.502

0 0

Dataset classification – UniProtKB

• A central hub for the collection of functional information on proteins, with accurate, consistent and rich annotation.

UniProtKB Entry

information about a protein

Annotations organized in topics in Entry view

Dataset classification – Training

• Corpus \rightarrow 100k abstracts (UniProt manually curated publications)

Traiı	n		Test		
Category	PMID		Category	PMI)
	#	%		#	%
Names	529	1	Names	9	1
Family & Domains	1595	2	Family & Domains	11	1
Miscellaneous	8152	8	PTM/processing	90	9
PTM/processing	8506	9	Miscellaneous	95	10
Structure	9580	10	Structure	100	10
Subcellular location	13754	14	Interaction	146	15
Interaction	14619	15	Subcellular location	148	15
Pathology & Biotech	15639	16	Pathology & Biotech	156	16
Expression	16456	16	Expression	162	16
Function	34753	35	Function	362	36
Sequences	55696	56	Sequences	570	57

- Training set \rightarrow 99k abstracts
 - Validation set \rightarrow 5k abstracts
- Test set \rightarrow 1k abstracts

Dataset classification pipeline

0 0 10

Dataset classification – Precision

• Expected list of UniProt categories associated with an abstract

Model	Precision	Recall	F-score
Naïve Bayes	0.7474	0.6329	0.6618
Random forest	0.8032	0.6642	0.7015
kNN	0.7394	0.6830	0.7045
Logistic regression	0.8110	0.7191	0.7521
MLP	0.8292	0.7749	0.7980

Baseline model: Naïve Bayes

Impact on search effectiveness

Pipeline assessment – bioCADDIE 2016 Challenge

bioCADDIE Corpus

800k datasets

Repository	Data	sets	Repository	Data	sets
	#	%		#	%
ClinicalTrials	192500	24.257%	phenoDisco	429	0.054%
BioProject	155850	19.638%	NursaDatasets	389	0.049%
PDB	113493	14.301%	MPD	235	0.030%
GEO	105033	13.235%	PeptideAtlas	76	0.010%
Dryad	67455	8.500%	PhysioBank	70	0.009%
ArrayExpress	60881	7.672%	CIA	63	0.008%
Dataverse	60303	7.599%	CTN	46	0.006%
NeuroMorpho	34082	4.295%	OpenfMRI	36	0.005%
Gemma	2285	0.288%	CVRG	29	0.004%
ProteomeXchange	1716	0.216%	YPED	21	0.003%

• Query benchmarking

• Train: 6 queries; Test: 15 queries

Complex queries !

- "Search for gene expression and genetic deletion data that mention CD69 in memory augmentation studies across all databases"
- "Find data of all types on the regulation of DNA repair related to the estrogen signaling pathway in breast cancer patients treated with clopidogrel across all databases"

Dataset formalization – DATS

-- D -- - II. III. 44

0 0 10

```
<DOC>
 <DOCNO>215676</DOCNO> <TITLE>VGlut-F-800286</TITLE> <REPOSITORY>neuromorpho 030116</REPOSITORY>
 <METADATA>
  "dataItem": {
    "dataTypes": ["dataset", "organism", "anatomicalPart", "treatment", "cell", "studyGroup", "dimension", "dataRepository", "organization"]
  },
  "studyGroup": {
     "name": "Control"
  "anatomicalPart": {
    "name": ["Left Antennal Lobe", "Not reported"]
  },
  "dataRepository": {
     "abbreviation": "NeuroMorpho",
     "homePage": "http://neuromorpho.org/",
     "name": "NeuroMorpho.Org",
     "ID": "SCR:002145"
   },
  "dataset": {
     "downloadURL": "http://neuromorpho.org/neuron info.jsp?neuron name=VGlut-F-800286",
    "note": "Cell types and Brain regions were assigned with a <a href=\"techDocFlyData.jsp?code=1\">heuristic process</a> based on available metadata. This dataset
was processed with a <a href=\"techDocFlyData.jsp?code=2\">streamlined automated variant</a> of the standardization procedure, additional details of which are
published
             <a
                   href=\http://www.ncbi.nlm.nih.gov/pubmed/?term=25576225\ target=\" blank\">here</a>.
                                                                                                                 Digital
                                                                                                                            reconstruction
                                                                                                                                              used
href=\"http://www.ncbi.nlm.nih.gov/pubmed/?term=23028271\" target=\" blank\">custom method</a> after image segmentation by Amira.",
    "ID": "27187",
     "title": "VGlut-F-800286"
  },
  "cell": {
    "name": ["Principal cell", "Glutamatergic neuron", "day8 Born"]
   },
  "treatment": {
    "title": "Green fluorescent protein (GFP)"
   "organization": {
    "abbreviation": "GMU",
```

а

<a

Dataset retrieval – Best results

Group	infAP	P@10	NDCG@10 I	nfNDCG	P@10
					(+partial)
SIBTextMin	0.3664	0.3467	0.6271	0.4258	0.7533
Elsevier	0.3283	0.4267	0.6861	0.4368	0.8267
UIUC GSIS	0.3228	0.2867	0.5569	0.4502	0.7133
OHSU	0.3193	0.3333	0.6122	0.4454	0.7600
UCSD	0.3169	0.3333	0.5877	0.5132	0.7600
Emory	0.2818	0.2667	0.5538	0.4241	0.7200
HiTSZ-ICRC	0.2576	0.2800	0.5472	0.3850	0.7000
BioMelb	0.2568	0.3333	0.6325	0.4017	0.7733
Мауо	0.1628	0.2600	0.5735	0.3933	0.7467
IAII_PUT	0.0876	0.1600	0.4265	0.3580	0.5333

+partial \rightarrow partial answers are relevant

-partial \rightarrow partial answers are not relevant

partial answer \rightarrow does not contain all key query concepts (but more than 50%)

Dataset retrieval – Relative results

	Stats	infAP	infNDCG	P@10 (+partial)	NDCG@1 0	P@10 (-partial)	UIR
ext ing	rank	1/10	5/10	5/10	3/10	2/10	2/10
SIB T Mini	score	0.3664	0.4258	0.7533	0.6271	0.3467	0.51
ts	median	0.2994	0.4250	0.7500	0.5806	0.3100	0.13
pan	min	0.0876	0.3580	0.5333	0.4265	0.1600	-1.00
Irtici	1 st quartile	0.2570	0.3954	0.7150	0.5546	0.2700	-0.43
ll pa	3 rd quartile	0.3219	0.4433	0.7600	0.6234	0.3333	0.40
A	max	0.3664	0.5132	0.8267	0.6861	0.4267	0.82

UIR → Unanimous Improvement Ratio

*Amigó et al., Combining evaluation metrics via the unanimous improvement ratio and its application to clustering tasks. (2011)

Query expansion – Corpus comparison

• Retrieval performance for different collections

- word2vec training corpus
- Baseline results use no query expansion

Collection	infAP	infNDCG	P@10 (+partial)
- (baseline)	0.3557	0.4235	0.7267
bioCADDIE	0.3545	0.4243	0.7178
РМС	0.3571	0.4216	0.7178
Medline	0.3704	0.4377	0.7511

K parameter

- bioCADDIE: 20
- PMC: 22
- Medline: 25

Performance improvement

- infAP: +4.1%
- infNDCG: +3.4%
- P@10: +3.4%

Integration @ NIBR

Classical search process

0⁰⁰1¹ 0 0⁰10⁰

Enhance expansion and classification

Query expansion service

0 0 10

Query expansion service

0¹⁰1¹ 0⁰1¹⁰

goldorak.hesge.ch:8088/getebioserver

Generalized Term Expander in Bio

Query						
cardiovascular diseases						
Top N terms 10 C Noun phrase model Result type JSON HTML		Expansi	on result	. S		
Expand	ID 🛆	Query 🛆	Expanded Term 🛆	Expanded Lemma 📥	Proximity Score 🛆	Term Rank 🗠
	341	cardiovascular_diseases NOUN	cardiovascular disease	cardiovascular disease	0.8751567602157593	0
	342	cardiovascular_diseases NOUN	atherosclerosis	atherosclerosis	0.7965342402458191	1
	343	cardiovascular_diseases NOUN	vascular diseases	vascular diseas	0.7777147889137268	2
	344	cardiovascular_diseases NOUN	cardiovascular complications	cardiovascular complication	0.746307909488678	3
	345	cardiovascular_diseases NOUN	vascular disease	vascular disease	0.7457807064056396	4
	346	cardiovascular_diseases NOUN	coronary heart disease	coronary heart disease	0.7361394166946411	5
	A CONTRACTOR OF A					
	347	cardiovascular_diseases NOUN	metabolic syndrome	metabolic syndrome	0.7336413860321045	6

Dataset classification service

0 0 10

Dataset classification service

goldorak.hesge.ch:8088/upclass

UniProt Classification

Query

DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phome silences unwanted genes and has a paramount function in plant or animal devolute. Members of a class of proteins that bind to methylated DNA. The Arabidopsis that (MBD) proteins, but the molecular/biological functions of most of these proteins are four proteins that interact with AtMBD6. Interestingly, three of them contain RNA binding the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNTP

nomenon that protects a genome from transposons, t. Methyl CpG binding domain proteins are nome encodes 13 methyl CpG binding domain ear. In the present study, we identified ndin, and are co-localized with AtMBD6 in

the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNT/ conditional clear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physically interacts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component of the RNA-mediated game silencing system. Applysis of genomic DNA methylation in the

atmbd6, atrps2c and atntf2 mutants, using methylation loci, pseudogenes and other targets of RNA-directed D

Probability model 🗌

Classification results

JSON	ID 🛆	Query 🛆	UniProt Category △	Classification Score 🗢
Classify	109	DNA methylation, mediated by double-stranded RNA, is a conserved eigenes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins and genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions roteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-I/S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of gen-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and otolved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTFhromatin condensation at the targets of RdDM.	Function	1.0
	110	DNA methylation, mediated by double-stranded RNA, is a conserved eigenes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins clana genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions roteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-I)S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that: 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of gen-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and otolved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTFhromatin condensation at the targets of RdDM.	Interaction	1.0

Conclusion Doc2Vec improves categorization but no impact on search Hypothesis: expert validation would be needed

- Doc2Vec improves query expansion
- Dataset search is possible with ~75% precision

Future work

• Embedded search into EGA

- Swiss EGA node for SPHN (BioMedIT)
- Cross-link with Swiss Hospitals Clinical Data Warehouses (SPHN)

• EGA / ELIXIR

- Central discovery tool
- · Embedded meta-indexing with validation by dataset submitter

European Genome-phenome Archive

EMBL-EBI

Haute Ecole Spécialisée de Suisse occidentale

University of Applied Sciences Western Switzerland h e g

Haute école de gestion de Genève Geneva School of Business Administration

SPHN

Swiss.

Network

Personalized Health

Acknowledgements

• SIB Text Mining / HES-SO

Emilie Pasche Julien Gobeill Luc Mottin Arnaud Gaudinat Romain Tanzer Daniel Texeira Pascale Gaudet (CALIPHO) Aurore Britan (CALIPHO) Amos Bairoch (CALIPHO) Pierre-André Michel (CALIPHO) Novartis Institute for Biomedical Research

Fatma Oezdermir-Zaech Pierre Parisot Olivier Kreim Therese Vachon

EBI-EMBL
 Thomas Keane
 Jo McEntyre

Triage by Ranking to Support the Curation of Protein Interactions

Patrick Ruch

SIB Text Mining HES-SO / HEG Geneva and SIB Swiss Institute of Bioinformatics

Three step-curation

Objectives

- Improve triage to support annotation of two data types
 - Protein Interactions
 - Post-Translational Modifications

Image: NX_014965 AURKA - Publications Image: NX_014965 AURKA - Aurora kinase A [EC 2.7.11.1] Image: NX_014965 Protein also known as: Serinethreonine-protein kinase aurora A Gene name: AURKA Image: NX_014965 Protein also known as: Serinethreonine-protein kinase aurora A Gene name: AURKA Image: NX_014965 Protein also known as: Serinethreonine-protein kinase aurora A Gene name: AURKA Image: NX_014965 Protein kinase - Seriffir protein kinase - Aurora Interactions Entry whose protein(s) existence is based on evidence at protein level Interactions Currated publications Sequence Publications 16 50 of 101 Proteomics Strow 100 ° summary i details Structures Ann. Oncol. 27, 127, 133 (2016) [Fuil text 10, 1083/annonchd/508 g] [Publed2848445 g] Identifiers Structures	* /
VPOTEIN AURKA » Aurora kinase A [EC 2.7.11.1] Function Protein also known as: Serine/threonine-protein kinase aurora-A Gene name: AURKA Eamily name: Protein kinase aurora-A Gene name: AURKA Eamily name: Protein kinase aurora-A Gene name: AURKA • extend overview Medical Gene name: AURKA Family name: Protein kinase aurora-A Gene name: AURKA • extend overview Interactions Interactions Expression Curated publications Sequence Publications 1 to 50 of 101 show 50 summary details Protemics Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Structures Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment. In advanced gastric cancer. Identifiers Show abstrate	
Function Protein also known as: Serinethreonine-protein kinase aurora. extend overview Medical Gene name: AURKA Family name: Protein kinase a Ser/Thr protein kinase a Aurora Expression Entry whose protein(s) existence is based on evidence at protein level Interactions Curated publications Sequence Publications 1 to 50 of 101 Protemics Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Kuboki Y, Yamashita S, Mava T, Ushijima T, Nagatsuma A, Kuwata T, Yoshino T, Doi T, Ochial A, Ohtsu A Identifiers Show abstrat	
Expression Entry whose protein(s) existence is based on evidence at protein level Interactions Curated publications Sequence Publications 1 to 50 of 101 Proteomics Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Structures Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Kubolit Y, amarkita S, Niwa T, Ushijima T, Nagatsuma A, Kuwata T, Yoshino T, Dol T, Ochial A, Ohtsu A Identifiers show abstrat	
Inclusion Curated publications Sequence Publications 1 to 50 of 101 Proteomics Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Structures Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Identifiers Show abstratt	
Sequence Publications 1 to 50 of 101 show 50 v summary details Proteomics Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Structures Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Identifiers Show abstract	
Proteomics Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Structures Kuboki Y, Yamashita S, Niwa T, Ushijima T, Nagatsuma A, Kuwata T, Yoshino T, Dol T, Ochiai A, Ohtsu A Identifiers Show abstract	
Structures Kuboki Y, Vamashita S, Niwa T, Ushijima T, Nagatsuma A, Kuwata T, Yoshino T, Doi T, Ochiai A, Ohtsu A Identifiers Ann. Oncol. 27, 127-133 (2016) [Full text: 10.1093/annonc/mdv508 @] [PubMed:26489445 @] Show abstract Show abstract	
Identifiers Show abstract	
Peptides CITED FOR: Medical Sequence Structures	
Phenotypes 🗠 Genomic Landscape of Esophageal Squamous Cell Carcinoma in A Japanese Population.	
Gastroenterology 150, 1171-1182 (2016) [Full text: 10.1053/j.gastro.2016.01.035 @] [PubMed:26873401 @]	
Exons Show abstract	
Identifiers	
REFERENCES Integrative clinical genomics of advanced prostate cancer. Robinson D., Van Allen E.M., Wu Y.M., Schultz N., Lonigro R.J., Mosquera J.M., Montgomery B., Taplin M.E., Pritchard C.C., Attard G., Beltran H., Abida W., Bradley R.K., Vinson J., Cao X., Vatis P., Kunju L.P., Hussain M., Feng F.Y. (morel, Chinnaiyan A.M.)	
Curated publications Cell 161, 1215-1228 (2015) [Full text: 10.10160, cell 2015.05.001 @] [PubMed:26000489 @]	
Additional publications 424 Show abstract	
Patents Cell. 162(2), 454 (2015 Jul 16)	
Submissions 2 CITED FOR: Medical Sequence Structures	
Web resources Genomic analysis of metastatic cutaneous squamous cell carcinoma.	
CIIn. Cancer Res. 21, 1447-1456 (2015) [Full text: 10.1158/1078-0432.CCR-14-1773 @] [PubMed:25589618 @]	
AURKA 3D structure CITED FOR: Medical Sequence Structures	

Methods

• Triage – Focus of the evaluation

Pre-annotate PPIs/PTMs descriptors in MEDLINE/PMC → BioMed DB
 Search protein in a relevance-driven search engine (BioMed) → Ranked list
 Search protein + PTMs/PPIs specific keywords → Ranked list (neXtA5)
 Query-independent ranking of content-rich PPIs/PTMs papers → Ranked list
 Merge by linear combination to obtain a unique ranking
 Select of PMIDs / PMC by curators

- Annotation Under evaluation
 - 6 Identify (and normalized) proteins and interactions
 - 7 Select relevant protein-protein relationships
 - 8 Save triples
 - [REST web services available]

Protein Interactions

- Subset of 29 concepts instead of a full ontology from the Proteomics Standards Initiative
 - bind, link, ...
- Query refinement : "binds + interacts + associates"

Linear combination = $0.9 \times \text{search}$ engine score + $1.5 \times \sum$ distinct descriptor

Linear combination = $1.0 \times \text{search}$ engine score

+ 0.1 $\times \sum_{\text{descriptor}} \log(1 + \text{descriptor length} \times \text{term frequency of descriptor})$

Post-Translational Modifications

• 16 most frequent PTMs in literature

• phosphorylation, glycosylation, ...

 $Linear\ combination = 0.9 \times search\ engine\ score\ +\ 1.7 \times \sum distinct\ descriptor$

• Query Refinement : "phosphorylation"

Linear combination = $1.4 \times$ search engine score + $1.3 \times \Sigma$ distinct descriptor

Results

	P0	P100
PubMed	-	-
BioMed	+34%	+30%
neXtA5	+170%	+101%
Query refinement	+191%	+66%

	P0	P100
PubMed	-	-
BioMed	+57%	+19%
neXtA5	+180%	+63%
Query refinement	+261%	+91%

Functional architecture

01⁰⁰11 0 0⁰10⁰

Online prototype

http://casimir.hesge.ch/nextA5/

NEXTA5

Accelerating Annotation of Articles via Automated Approaches in neXtProt

	Select a gene and annotation axis Select a relevant publicat	ion	Ad	ccept, refin	4+5 e, reject proposed a	nnotations	
STEP 2-3 - Gene: AURKA	SELECT A RELEVANT PUBLICATION Axis: Protein Interactions After: 1990		S.	ource: Pul	bMed		Back
	348 results			Page 1/4			> >>
Publication id	Title	Year	Relevance	Status	Interactions nb	Abstract [Show all]	
<u>24240108</u>	HDM2 regulation by AURKA promotes cell survival in gastric cancer.	2014	18.0	not done	Between 1 and 5	[Show]	Select
26778597	Expression of aurora kinase A correlates with the Wnt-modulator RACGAP1 in ga	2016	17.9	not done	Between 5 and 10	[Show]	Select
23925655	HIF-1 is involved in the negative regulation of AURKA expression in breast cancer	2013	17.8	not done	Between 1 and 5	[Show]	Select
<u>17634533</u>	Predictive value of Aurora-A/STK15 expression for late stage epithelial ovarian ca	2007	16.5	not done	Between 1 and 5	[Show]	Select
27341528	AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabi	2016	16.4	not done	Between 1 and 5	[Show]	Select
25288231	Expression of regulators of mitotic fidelity are associated with intercellular hetero	2014	16.1	not done	Between 5 and 10	[Show]	Select
27339427	Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its	2016	16.1	not done	Between 5 and 10	[Show]	Select
<u>19412426</u>	Aurora-A expression is independently associated with chromosomal instability in	2009	15.8	not done	Between 5 and 10	[Show]	Select
		1				1000000	
25830658	Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional mo	2015	15.8	not done	Between 5 and 10	ISnow	Select

Online prototype

	Select a	gene and annotation axis	Select a relevant publicatio	on Accept, refine, reject proposed	annotations
STEP 4	-5 - ACCEP	T, REFINE, REJECT PRO	OPOSED ANNOTATIONS		Back
Gene: A	JRKA	Axis: Protein Inte	eractions Source: PubMed	ld: 27339427	
Allosterie	: modulation o	f AURKA kinase activity by a	small-molecule inhibitor of its protein	n-protein interaction with TPX2.	
AurkinA r	n cells, without a nislocalise AUR feature as the ta	affecting ATP binding to the act KA from mitotic spindle microtu arret for a new class of dual-mic	tive site, defining a novel mechanism of al ubules. Thus, our findings provide fresh ins ode AURKA inhibitors, with implications fo	ket induces structural changes in AURKA that i llosteric inhibition. Consistent with this mechani sight into the catalytic mechanism of AURKA, a for the chemical biology and selective therapeut	inhibit catalytic activity ism, cells exposed to and identify a key ic targeting of structura
AurkinA r structural related kin <u>See t</u> POTENTI	n ceils, without ; nislocalise AURI feature as the ta nases. <u>he publication of</u> AL ANNOTATIONS Relation	affecting ATP binding to the act KA from mitotic spindle microtu arget for a new class of dual-mo <u>n PubMed</u> 3 Object	tive site, defining a novel mechanism of al ubules. Thus, our findings provide fresh ins ode AURKA inhibitors, with implications fo	ket induces structural changes in AURKA that i llosteric inhibition. Consistent with this mechani sight into the catalytic mechanism of AURKA, a for the chemical biology and selective therapeuti Action	Inhibit catalytic activity ism, cells exposed to and identify a key ic targeting of structure Details
AurkinA r structural related kin <u>See t</u> POTENTI Subject	h ceils, without and a she tanases.	affecting ATP binding to the act KA from mitotic spindle microtu arget for a new class of dual-mo <u>n PubMed</u> S Object TPX2	tive site, defining a novel mechanism of al ubules. Thus, our findings provide fresh ins ode AURKA inhibitors, with implications fo Eco	ket induces structural changes in AURKA that i llosteric inhibition. Consistent with this mechani sight into the catalytic mechanism of AURKA, a for the chemical biology and selective therapeuti Action	Details Details <u>Details</u> <u>IShow all</u>

Online prototype

-	Select a ge	ne and annotation axis	Select a relevant publication	Accept, refine	Major change for D
Gene: A	JRKA	Axis: Protein Interactions	ANNOTATIONS Source: PubMed lecule inhibitor of its protein-prote	Id: 273394	stewardship & Text Mining !
protein, T inhibit AU Tyr-Ser-Ty vitro and i	PX2. Here, we repo RKA activity and m r motif from TPX2, n cells, without affe	rt the discovery of AurkinA, a novel che itotic localization. In crystal structures blocking the AURKA-TPX2 interaction. cting ATP binding to the active site. de	emical inhibitor of the AURKA-TPX2 in , AurkinA binds to a hydrophobic pocl AurkinA binding to the Y- pocket indu	teraction, which acts v ket (the 'Y pocket') that ces structural changes inhibition. Consistent	naterial) are captu
structural related ki	nislocalise AURKA feature as the targen nases. he publication on P	from mitotic spindle microtubules. Thu et for a new class of dual-mode AURKA <u>ubMed</u>	is, our findings provide fresh insight inf A inhibitors, with implications for the c	o the catalytic mechan hemical biology and se	
POTENTI Subject	nislocalise AURKA feature as the targen nases. he publication on P AL ANNOTATIONS Relation	from mitotic spindle microtubules. Thu et for a new class of dual-mode AURKA ubMed Object	s, our findings provide fresh insight in A inhibitors, with implications for the c Eco	o the catalytic mechan hemical biology and se	Action Details
Conclusion

- Triage by pre-annotating literature is effective
 - PPIs +191%
 - PTMs +261%
 - Diseases Functions Cell location: factor 2-30 !
- UX and productivity gain for triage currently evaluated
 - Gain of time on the whole process ?
 - Usability to improve UX

Acknowledgements

... and YOU !!

BiTeM group

- Patrick Ruch
- Julien Gobeill
- Emilie Pasche
- Douglas Teodoro
- Dina Vishnyakova

CALPIPHO group

- Pascale Gaudet
- Valentine Rech de Laval
- Anne Gleizes
- Isabelle Cusin
- Pierre-André Michel
- Amos Bairoch

Funding: [neXtPresso SNF 153437]

Decision-support for personalized health

a variome scale challenge for evidence-based prescription

Patrick Ruch – p<u>atrick.ruch@hesge.ch</u> @patrickruch SIB Text Mining Group & HES-SO – HEG Geneve

Context

- Personalized medicine in oncology
- Characterization of variants is labour-intensive

Objective System to automatically rank SNVs and chemotherapies Based on occurrences in the biomedical literature Acceleration of the variant analysis process Identify the Suggest literature to Rank the variants of Generate final potential treatments support a given patient report recommendations for a given variant

Ranking of variants

Data

Patient	SNV total	CNV total	Clinic. relevant SNV	Clin. relevant CNV
1	4569	~4789	3	14
2	88	~1118	1	6
3	985	~2028	1	6
4	44	0	14	0
5	20	0	14	0

Patient 3 and patient 5 selected for tuning.

Ranking of variants

Data

Patient	SNV total	CNV total	Clinic. relevant SNV	Clin. relevant CNV
1	4569	~4789	3	14
2	88	~1118	1	6
3	985	~2028	1	6
4	44	-	14	-
5	20	-	14	-

→Large-scale learning to rank / selection problem

Patients #3 and #5 selected for tuning

Funnel

Method

A. Preprocessing

- Non coding SNVs are removed from the list
- Reduction of SNVs by a factor 5

B. Query building

- Generation of several queries
- E.g. Disease + Gene + Variant ; Gene + Variant ...

C. Query expansion

• SNV generator, based on HVGS nomenclature and non standard formats and expressions encountered in literature

D. Ranking

Based on number of publications found

Evaluation

• Preliminary results

- Mean reciprocal rank: 81%
- Precision at rank 5: 62%
- Recall at rank 5: 58%
- +++ synonyms for variants
- +++ full-text vs. abstract
- +++ up to 1000 publications per SNVs
- Benchmark is not "gold"
- \Rightarrow precision of the system is probably higher

0 6⁰10⁰

VARIOMES					
0	2	3	4		
Select a patient	Select a mutation of interest	Select relevant publications	See relevant treatments		
Patient: 20160518_1: Uveal Melanom	a ᅌ *				
ADVANCED OPTIONS					
			ок		
	Contact - Last upd	ate: February 2017			

00.11 0 0¹10⁰

User: emilie

0 0 1 19 9 1 1

VARIOMES

0⁰⁰11 0 0¹10⁰

User: emilie

VARIOMES

		Select a	a patient Select a mutation of interest Select relevant publications S	See releva	4)		
STI	EP 3	3 - RELEV	ANT PUBLICATIONS			Back	
Pati	ent:	20160518_1	Disease: Uveal Melanoma Gene: GNAQ Mutation: c.6	826A>T p.Gli	n209Leu		
Рот	FNT						
		PMCID	Title	Abstract	Relevance		
1		PMC3639659	Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma.	[Show]	2.1	Î	PubMed Central
2		PMC4249701	Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial.	[Show]	2.1	Î	PubMed Central
3		PMC3924570	Molecular targeting of G α and G β y subunits: a potential approach for cancer therapeutics.	[Show]	2 .1	îrrî	PubMed Central
4		PMC4074519	Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry.	[Show]	2.1	Î	PubMed Central
5		PMC4357379	Digital PCR validates 8q dosage as prognostic tool in uveal melanoma.	[Show]	<mark>2.1</mark>	m	PubMed Central
6		PMC5256122	Metastatic disease from uveal melanoma: treatment options and future prospects.	[Show]	0.9	m	PubMod Central
7		PMC3372505	The Gaq/11 proteins contribute to T lymphocyte migration by promoting turnover of integrin LFA-1 through recycling.	[Show]	0.9	Î	PubMed Central
8		PMC3838190	The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-dependent metastatic melanoma.	[Show]	0.9	Î	PubMed Central
9		PMC360395	Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells.	[Show]	0.9	inni -	PubMed Central
10		PMC3511501	Phase II trial of sorafenib in combination with carboplatin and paclitaxel in patients with metastatic uveal melanoma: SWOG S0512.	[Show]	0.2	Î	PubMed Central
						-	

0⁰⁰11 0 0¹10⁰

VARIOMES

2 Select a patient Select a mutation of interest	3 Select relevant publications	4 See relevant treat	ments	
STEP 3 - RELEVANT PUBLICATIONS Patient: 20160518_1 Disease: Uveal Melanoma Gene: C POTENTIAL PUBLICATIONS All	GNAQ Mutation: c	.626A>T p.Gln209Let	Back	
PMCID Title		Abstract Relev	ance	
1 Image: PMC3639659 Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA 2 Image: PMC4249701 Effect of selumetinib vs chemotherapy on progression-free survival in uveal	A from plasma of patients with uveal melanoma. melanoma: a randomized clinical trial.	[Show] 2.1 [Show] 2.1	ITITI Central	
3 Ø PMC3924570 Molecular targeting of Gα and Gβγ subunits: a potential approach for cancer	r therapeutics.	[Show] 2.1	TTTT PubMed Central	
4 OMC4074519 Hippo-independent activation of YAP by the GNAQ uveal melanoma oncoge circuitry.	ene through a trio-regulated rho GTPase signaling	[Show] 2.1	FIFFI PubMed Central	
5 DMC4357379 Digital PCR validates 8q dosage as prognostic tool in uveal melanoma.		[Show] 2.1	IIII PubMed Central	e.g. Sorafer
6 Ø PMC5256122 Metastatic disease from uveal melanoma: treatment options and future pros	pects.	[Show] 0.9	TTTT PubMed Central	
7 V PMC3372505 The Gaq/11 proteins contribute to T lymphocyte migration by promoting turn	over of integrin LFA-1 through recycling.	[Show] 0.9	IIII PubMed Central	
8 Z PMC3838190 The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-depend	dent metastatic melanoma.	[Show] 0.9	IIII PubMed Central	
9 2 PMC360395 Mutated alpha subunit of the Gq protein induces malignant transformation in	n NIH 3T3 cells.	[Show] 0.9	PubMed Central	
10 PMC3511501 Phase II trial of sorafenib in combination with carboplatin and paclitaxel in pa	atients with metastatic uveal melanoma: SWOG	[Show] 0.2	PubMed Central	

User: emilie

0⁰⁰11 0 0¹-10⁰

User: emilie

VARIOMES

1 Select a patient		2 Select a mutation of	of interest	3 Select relevant publicat	ions See relevant treatments
STEP 4 - CURATE PROPO	DSED TREAT	MENTS			Beck
Patient: 20160518_1	Disease	Uveal Melanoma	Gene:	GNAQ	Mutation: c.626A>T p.Gin209Leu
Drug Sorafenib (DB00398)	5.6	Evidences [Show]		Please select	Decision
Trametinib (DB08911)	3.6	[Show]	0	Please select	
	ested as treatme	nts to avoid for this	patient.		
The following treaments are sugge		Evidences	Suggestion		Decision
The following treaments are sugge Drug carmustine (DB00262)	Score 4.2	[Show]	8	Please select	S

0⁰⁰11 0 0⁰10⁰

VARIOMES

1 Select a patient		2 Select a mutation of	interest	3 Select relevant publication	s See relevant	treatments	
STEP 4 - CURATE PROPO	SED TREAT	IENTS				Back	
Patient: 20160518_1	Disease:	Uveal Melanoma	Gene: G	NAQ	Mutation: c.626A>T p.Gin2	09Leu	
The following treaments are sugge Drug	sted as potential Score	treatments for this pa	atient. Suggestion		Decision		
Sorafenib (DB00398)	5.6	[Hide]	0	Drug can be used to	o treat this patient		
PMC5226122 PMC522628 PMC5228280 Novel insight into or inhibitors such as so	90Y-labelled microsp 9 o study (NCT01730 ular melanoma biolo prafenib, sunitinib and	pre. heres with sorafenib is be 157). gy has led to the investiga imatinib (19).	ing studied in a phase I tria	II (NCT01893099) and combinati	on with ipilimumab is being ed therapies, including kinase	1 Not rele 🗘 1 Relevar 🗘	
Trametinib (DB08911)	3.6	[Show]	۵	Please select		0	
The following treaments are sugge Drug carmustine (DB00262)	sted as treatmen Score 4.2	is to avoid for this pa Evidences [Show]	tient. Suggestion 🛞	Please select	Decision	0	

User: emilie

0 0 10

MOLECULAR TUMOR REPORT

generated by SIB Text mining

ENER	ALITIES				
eport ge	nerated by: emilie				
atient ide	entifier: 20160518_1				
isease: l	Jveal Melanoma (C7712)				
OMATI	C MUTATED GENES, CA	NCER-TYPE SPECIFIC THERAPY			
Gene	Mutation	Pathway	Treatment	Score	Références
GNAQ	c.626A>T p.GIn209Leu	Acetylcholine regulates insulin secretion G alpha (q) signalling events ADP signalling through P2Y purinoceptor 1 Thromboxane signalling through TP receptor Acids bound to GPR40 (FFAR1) regulate insulin secretion Thrombin signalling through proteinase activated receptors (PARs)	DB00398 (Sorafenib)	5.6	PMC3639659 PMC5256122 PMC5228280
GNAQ	c.626A>T p.Gin209Leu	Acetylcholine regulates insulin secretion G alpha (a) signalling events ACP signalling through P2Y purinoceptor 1 Thromboxane signalling through TP receptor Acids bound to GPR40 (FFAR1) regulate insulin secretion Thrombin signalling through proteinase activated receptors (PARs)	DB08911 (Trametinib)	3.6	PMC3639659 PMC5256122
HERAF	PIES WITH POTENTIAL L	ACK OF BENEFIT			
Gene	Mutation	Pathway	Treatment	Score	Références
GNAQ	c.626A>T p.Gln209Leu	Acetylcholine regulates insulin secretion G alpha (q) signalling events ADP signalling through P2Y purinoceptor 1 Thromboxane signalling through TP receptor Acids bound to GPR40 (FFAR1) regulate insulin secretion Thrombin signalling through proteinase activated receptors (PARs)	DB00262 (carmustine)	4.2	PMC4040458

Next steps

• Extraction of chemotherapies

• Drug list + off-label (?)

Scale-up evaluation and control negative

- Copy Number Variant (CNV)
- Scale patient population: CHUV, HUG, ...

Infrastructure is needed: BioMedIT + SPHN

- Swiss Variant Interpretation Platform...
 and maybe beyond Switzerland (cf. Beacon)
- Participant-level / Patient-level Data + sequences
 [ELSI]
- Access-restricted evidence data (e.g. EGA)

→ Trusted third party (SAMW) / Federated platform

Acknowledgements

SIB Text Mining / HES-SO

Emilie Pasche Anais Mottaz Luc Mottin Julien Gobeill

Nexus (ETH/USZ) Franziska Singer Nora Toussaint Daniel Stekhoven

SIB ClinBio Valérie Barbié Aitana Lebrand **Theoretical oncogenomics (UZH)** Michael Baudis

SIB Tech Heinz Stockinger Danier Texeira

Special thanks to the

Librarians of the Swiss Academy of Medical Sciences